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Investigations on the chronic health effects of fine particulate
matter (PM2.5) exposure in China are limited due to the lack of
long-term exposure data. Using satellite-driven models to gener-
ate spatiotemporally resolved PM2.5 levels, we aimed to estimate
high-resolution, long-term PM2.5 and associated mortality burden
in China. The multiangle implementation of atmospheric correc-
tion (MAIAC) aerosol optical depth (AOD) at 1-km resolution was
employed as a primary predictor to estimate PM2.5 concentrations.
Imputation techniques were adopted to fill in the missing AOD
retrievals and provide accurate long-term AOD aggregations.
Monthly PM2.5 concentrations in China from 2000 to 2016 were
estimated using machine-learning approaches and used to analyze
spatiotemporal trends of adult mortality attributable to PM2.5 expo-
sure. Mean coverage of AOD increased from 56 to 100% over the
17-y period, with the accuracy of long-term averages enhanced after
gap filling. Machine-learning models performed well with a random
cross-validation R2 of 0.93 at the monthly level. For the time period
outside the model training window, prediction R2 values were esti-
mated to be 0.67 and 0.80 at the monthly and annual levels. Across
the adult population in China, long-term PM2.5 exposures accounted
for a total number of 30.8 (95% confidence interval [CI]: 28.6, 33.2)
million premature deaths over the 17-y period, with an annual bur-
den ranging from 1.5 (95% CI: 1.3, 1.6) to 2.2 (95% CI: 2.1, 2.4) mil-
lion. Our satellite-based techniques provide reliable long-term PM2.5

estimates at a high spatial resolution, enhancing the assessment of
adverse health effects and disease burden in China.

satellite-based PM2.5 estimation | mortality burden | high resolution |
long-term trend | gap filling

Exposure to ambient fine particulate matter (PM2.5, or par-
ticulate matter with aerodynamic diameter ≤2.5 μm) is

known to be a harmful environmental factor that impacts human
health (1, 2), contributing to 4.2 million deaths globally in 2015,
with 1.1 million deaths in China alone (3). Ambient PM2.5 levels
in China greatly exceed World Health Organization (WHO)
guidelines on a regular basis, as well as the levels in most post-
industrial countries (e.g., the United States). However, due to
the lack of PM2.5 monitoring data before 2013, research focusing
on chronic health effects and disease burden of PM2.5 exposure is
very limited in China.
One emerging solution to this challenge is spatial modeling

driven by remotely sensed data. This approach employs satellite
aerosol optical depth (AOD) and both meteorological and
geographical factors to estimate spatially resolved PM2.5 levels.
Due to advances in long-term stability of satellite AOD re-
trievals, PM2.5 concentrations during periods without ground
monitoring may be predicted under the assumption that the re-
lationships between ground-level PM2.5 concentrations and these
predictors are relatively constant across a given time period (4,
5). With its broad coverage, satellite data can provide spatial
surfaces of PM2.5 as well. For example, Ma et al. (4) predicted
PM2.5 concentrations in China from 2004 to 2013 using AOD

retrieved by the moderate resolution imaging spectroradiometer
(MODIS) at 10-km resolution and a two-stage spatial statistical
model. Using a similar model structure, Liang et al. (6) estimated
the PM2.5 concentrations in Beijing and its surrounding areas
from 2004 to 2014 with the multiangle implementation of atmo-
spheric correction (MAIAC) AOD at 1-km resolution. Satellite-
based spatial estimates can fill in the gaps of ground observations
and capture local-scale PM2.5 variability. The applications of sat-
ellite data are especially valuable in less developed regions of the
world with few monitors. In addition to these methods, machine-
learning techniques are increasingly employed to improve pre-
diction accuracy and hindcast performance (5, 7). For example,
Xiao et al. (5) predicted PM2.5 concentrations across China in
2008 at 10-km spatial resolution using ground observations be-
tween 2013 and 2016 and multiple machine-learning algorithms,
which demonstrated better performance compared with tradi-
tional statistical models.
Accurately estimating PM2.5 levels is a crucial step toward

characterizing long-term population exposure. Although both
national and regional PM2.5 models have previously performed
well in China (5, 6), key challenges remain that limit their ap-
plications in epidemiological studies and mortality burden esti-
mation. First, cloud cover and high surface reflectance lead to
nonrandom missingness in AOD, especially during winter or in
regions covered by snow or desert. Consequently, aggregated
long-term PM2.5 estimates with missing values tend to be biased
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due to the nonrandom samples. For example, Xiao et al. (8) were
able to improve the predictive accuracy of annual mean PM2.5
estimates by filling the AOD gaps as indicated by cross-
validation (CV) R2 of 0.87 to 0.94 compared to 0.76 without
gap filling. However, most previous studies in China have
assessed exposure levels using satellite-based PM2.5 estimations
without accounting for this missingness in AOD or PM2.5 data (9,
10). Second, most national long-term estimations of PM2.5 have
been at relatively coarse resolutions in China (e.g., 10 km) (4,
11). Although global PM2.5 concentrations at 1-km resolution
have been reported (12), they were predicted at the annual level.
Due to the large population size and a highly complex air pol-
lution emissions profile in China, high-resolution data at both
spatial and temporal levels are essential to distinguish the ex-
posure levels for populations who live in neighboring areas but
are affected by different emission sources. Although regional-
scale MAIAC-driven PM2.5 models have been reported in
China (6, 8, 13), high-resolution national PM2.5 surfaces are still
needed to support large-scale epidemiological studies focusing
on chronic health effects of PM2.5 exposure.
The aim of this work is to develop high-performance predic-

tion models to assess long-term PM2.5 exposure levels in China at
1-km resolution using machine-learning algorithms and to estimate
the spatial and temporal characteristics of all-cause excess mortality
attributable to PM2.5 exposure in each province of China.

Results
Performances of Machine-Learning Models. Our study domain is
presented in Fig. 1. Summary statistics of model CV perfor-
mances and performance in each subregion are shown in Ta-
ble 1. Our machine-learning models performed well in all regions
of China. Monthly predicted PM2.5 concentrations were in
overall agreement with ground measurements. Random 10-fold
CV R2 was 0.93 with a root-mean-squared prediction error
(RMSE) of 8.90 μg/m3 at the monthly level. Our models per-
formed best in the southeast region, with a CV R2 of 0.93 and a
RMSE of 6.18 μg/m3, and worst in the northwest region (R2 of
0.87 and RMSE of 16.29 μg/m3). During the historical period
(i.e., 2000–2012), a moderate agreement was observed between
the available measurements and predicted PM2.5 concentrations
at the monthly level (R2 = 0.67, RMSE = 10.61 μg/m3), and the
agreement improved significantly at the annual level with a R2 of
0.80 and a RMSE of 8.90 μg/m3.

Performance of Gap-Filling Approaches. The original 17-y temporal
coverage (percentage) of daily MAIAC AOD across the study
domain was 56%, which was higher in north China (∼70%) and
lower in the southwest (<50%) (SI Appendix, Fig. S1). After
filling the missing AOD values, temporal coverage in all grid
cells increased to 100%. The linear regression R2 value between
monthly aggregated ground aerosol robotic network (AERO-
NET) AOD observations and gap-filled AOD was 0.80 (Fig. 2B),
which was higher than that with missingness (R2 = 0.73; Fig. 2A).
Similarly, the annual mean PM2.5 after filling missing AOD
showed higher accuracy than those without gap filling as esti-
mated by comparing with the annual mean observations from
2013 to 2016 (Fig. 2 C and D). The R2 values increased from 0.66
to 0.97, with RMSE decreased from 18.54 to 3.86 μg/m3.

Long-Term Spatiotemporal Trends of PM2.5 Concentrations. Fig. 3
shows the spatial distribution of annual mean PM2.5 concentra-
tions at 1-km resolution from 2000 to 2016. Spatial trends of
PM2.5 concentrations across the domain were comparable in all
years, with high concentrations occurring at Beijing, Tianjin, and
southern Hebei (70 to 170 μg/m3). PM2.5 levels were lower in the
rural areas of northern Inner Mongolia, southeastern Tibet, and
western Sichuan (10 to 30 μg/m3). Temporally, annual mean
PM2.5 concentrations across China fluctuated between 39.5 and
47.0 μg/m3 from 2000 to 2016, with the lowest level observed in
2000. The national PM2.5 level peaked in 2013, followed by a
gradual decline from 2013 (47.0 μg/m3) to 2016 (41.5 μg/m3).
Regionally speaking, all provinces suffered the most severe
pollution during 2013 and 2014 except Hunan, Hubei, Chongq-
ing, and Shaanxi, which saw annual mean PM2.5 concentrations
peak in 2011 followed by a downward trend from 2012 to 2016
(SI Appendix, Fig. S2). The lowest PM2.5 level was observed in
either 2000 or 2016 in all provinces.

Mortality Burden Attributable to PM2.5 Exposure. Fig. 4 shows the
estimated premature deaths per 10,000 persons among adults
(i.e., ≥25 y old) in each province (Fig. 4A) and the total number
of adult premature deaths attributable to long-term PM2.5 ex-
posure from 2000 to 2016 (Fig. 4B). Estimated per-capita deaths
were higher in Henan, Shandong, Tianjin, and Hebei (19.0 to
49.4 per 10,000 persons) and relatively lower in Macao, Taiwan,
and Hainan (8.0 to 17.9 per 10,000 persons). Annual premature
deaths of adults in China ranged from 1.5 [95% confidence in-
terval (CI): 1.3, 1.6] million (2000) to 2.2 (95% CI: 2.1, 2.4)
million (2013), with a total number of 30.8 (95% CI: 28.6, 33.2)
million across the 17 y. A downward trend of annual mortality
burden due to PM2.5 exposure was also observed from 2013 to
2016 [2.2 (95% CI: 2.1, 2.4) million to 1.8 (95% CI: 1.7, 2.0)
million]. After subtracting the annual burden caused by pop-
ulation growth, temporal variations of total mortality burden
attributable to long-term PM2.5 exposure were still consistent

Fig. 1. Study domain and spatial distributions of ground monitors and
elevation.

Table 1. Model CV performances in each subregion of China at
the monthly level

Cluster Slope Intercept R2 RMSE

Overall 1.02 −1.36 0.93 8.90
Southeast 1.03 −1.29 0.93 6.18
Qinghai-Tibet 1.04 −2.08 0.91 8.12
North 1.02 −1.61 0.92 11.53
Northeast 1.04 −2.27 0.91 9.06
Northwest 1.04 −3.07 0.87 16.29
PRD 1.03 −1.22 0.93 6.23
YRD 1.02 −1.27 0.93 8.88

PRD, Pearl River Delta; R2, coefficient of determination; RMSE,
root-mean-squared prediction error; YRD, Yangtze River Delta.

25602 | www.pnas.org/cgi/doi/10.1073/pnas.1919641117 Liang et al.
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with the variations of annual mean PM2.5 concentrations, with a
peak observed in 2013 (1.9 million; 95% CI: 1.7 million, 2.1
million). The provincial distributions of the annual absolute

number of PM2.5-associated premature deaths from 2000 to 2016
are shown in SI Appendix, Fig. S3, and county-level burdens in
2000 and 2010 are shown in SI Appendix, Fig. S4. Although a

Fig. 2. Performances of gap-filling approaches on AOD and PM2.5 estimates. A and B are comparisons of monthly mean MAIAC AOD and AERONET AOD
before and after gap filling (2000–2016), respectively. C and D are comparisons of annual mean PM2.5 estimates and ground observations before and after
gap filling (2013–2016), respectively.

Fig. 3. Annual mean spatial distribution of PM2.5 concentrations in China from 2000 to 2016 at 1-km spatial resolution.

Liang et al. PNAS | October 13, 2020 | vol. 117 | no. 41 | 25603
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similar spatial distribution pattern was observed, detailed fea-
tures were better captured by the county-level estimates com-
pared with those at the provincial level.

Discussion
Comparison with National-Scale PM2.5 Models.Various spatial models
have been adopted previously to estimate the spatiotemporal
patterns of PM2.5 in China. Interpolation methods such as Kriging
have been used traditionally to generate PM2.5 surfaces. Although
interpolation demonstrates high accuracy near ground monitors,
they often fail to provide estimates with comparable accuracy in
areas further from the monitors. Additionally, interpolation often
produces overly smooth estimates (14), especially when robust
spatial predictors are absent. Moreover, since interpolation
methods rely heavily on ground measurements, using them to
estimate historical PM2.5 levels before 2013 in China is difficult.
Various forms of land use regression models have been used for
exposure estimation given their ability to capture fine-scale PM2.5
gradients near roads. However, limited by the temporal resolution
of source data (i.e., land cover type and road networks), these
methods detect fewer variations of PM2.5 over time (15). Chemical
transport models (CTMs) may also provide PM2.5 simulations with
complete coverage in space and time (16). However, without de-
tailed emission inventories, large discrepancies are usually repor-
ted when compared with ground observations. As a result, CTM
simulations have rarely been used directly in epidemiological

studies (17). Thus, satellite-driven techniques are preferred
methods to predict long-term PM2.5 concentrations in China given
their high accuracy and extensive temporal coverage. Compared
with previous PM2.5 estimates using satellite data and machine-
learning models (7, 11), we provide PM2.5 values at a finer spatial
resolution (1 km vs. 3 or 10 km) and higher accuracy (monthly CV
R2 of 0.93 vs. 0.71 and 0.86).

High-Resolution PM2.5 Estimates. High-resolution PM2.5 concen-
tration estimates are necessary to resolve more accurate expo-
sure gradients within population clusters. As a result, both the
health effects of air pollution between clusters and within clus-
ters may be detected in large-scale studies (18). PM2.5 estimates
at the monthly level help to distinguish long-term exposure levels
for individuals who reside in the same grid cell, but have dif-
ferent time points regarding the occurrence of health outcomes
(e.g., the beginning and end of a year). They are especially
helpful in regions where air pollution levels vary significantly by
season. Moreover, our estimates showed higher consistency with
ground observations when compared with a previously reported
global dataset of annual PM2.5 levels by van Donkelaar et al. (12)
(CV R2 of 0.93 vs. 0.81). For example, in the North China Plain
region, van Donkelaar et al.’s model tended to overestimate the
PM2.5 concentrations in 2016 in the relatively clean regions (e.g.,
Shanxi province; SI Appendix, Fig. S5B) and underestimated the
PM2.5 concentrations in the more polluted regions (e.g., downtown

Fig. 4. Premature deaths attributable to long-term PM2.5 exposures from 2000 to 2016. A shows the annual premature deaths per 10,000 persons attrib-
utable to long-term PM2.5 exposure in each province of China. B shows annual mean PM2.5 concentrations and their corresponding total mortality burdens
across China.

25604 | www.pnas.org/cgi/doi/10.1073/pnas.1919641117 Liang et al.
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Beijing; SI Appendix, Fig. S5D). Although van Donkelaar et al.’s
annual mean estimates showed similar patterns from 2000 to 2016,
the estimated absolute PM2.5 levels are much lower than our model
in many parts of China (e.g., Beijing; SI Appendix, Fig. S5E). This is
likely because our model was specifically trained in China, resulting
in better capability of capturing fine-scale PM2.5 variations as
compared to a global model.

Effect of Gap-Filling Approaches. Spatiotemporally continuous
PM2.5 data are crucial to assess long-term exposures in epide-
miological research. Nonrandom missingness in satellite AOD
due to high surface reflectance and/or cloud cover can cause
substantial data losses (19). If not properly addressed, time-
averaged PM2.5 levels will be heavily biased toward sunny days,
snow/ice-free regions or seasons, and densely vegetated areas.
This, in turn, will affect the magnitude and spatial distribution of
estimated health effects and disease burdens (20). In this study,
substantial efforts were dedicated to the multiple imputation
procedure to fill missing AOD retrievals in order to reduce the
sampling bias. The accuracy of long-term PM2.5 averages was
greatly enhanced after filling the AOD gaps (Fig. 2). Without
gap-filling approaches, the 17-y mean PM2.5 concentrations were
underestimated by 5 to 43 μg/m3 in northeastern and north-
western China, and overestimated by 5 to 65 μg/m3 in central and
southern China (SI Appendix, Fig. S6).

Accuracy of Historical Exposure Estimates. Due to the lack of rou-
tine ground PM2.5 monitoring data before 2013 in China, his-
torical estimates were generated using our machine-learning
algorithms trained with data since 2013. This hindcasting ap-
proach is likely to introduce errors to historical estimates at a
relatively high temporal resolution. Ma et al. (4) developed a
two-stage model to estimate PM2.5 levels in China (10-km res-
olution) from 2004 to 2013 and reported an annual prediction R2

of 0.73. Xiao et al. (5) imputed missing AOD and used machine-
learning models to predict daily PM2.5 levels in Beijing in 2008
with a hindcasting R2 of 0.58. Geng et al. (16) predicted PM2.5
concentrations between 2006 and 2012 with CTM simulations
calibrated by satellite data, and reported a R2 of 0.55 at the
monthly or annual level when compared with limited ground
observations. By averaging the predictions of two machine-
learning algorithms, our predictions in the historical period at
1-km resolution showed excellent predictive power with a R2 of
0.80 at the annual level.

Spatial and Temporal Trends of PM2.5 and Its Mortality Burden. A
comprehensive control policy, named the Air Pollution Preven-
tion and Control Action Plan, was issued by the China State
Council in 2013 to control severe air pollution and improve
public health (21). It has resulted in improved air quality with
decreasing PM2.5 levels nationwide. Using measurements from
over 1,000 ground monitors, the China National Environmental
Monitoring Center (CNEMC) reported that the annual mean
PM2.5 concentrations were 72, 62, 55, and 47 μg/m3 in China
from 2013 to 2016, respectively (http://www.cnemc.cn/jcbg/
zghjzkgb/). A similar trend during the same time period can be
seen in our PM2.5 estimates with all grid cells of China included
(Fig. 4B). However, our spatially aggregated estimates are lower
than the averages from only the ground monitors. Similar to the
regulatory monitoring network in the United States, the Chinese
national monitoring network is mostly concentrated in densely
populated regions in central and eastern China (Fig. 1). Since
rural areas and less developed provinces are scarcely monitored
(e.g., Tibet, Qinghai, and Inner Mongolia), using averages
obtained from the monitors tends to overestimate actual national
mean PM2.5 concentrations.
Several studies have reported the mortality burden attribut-

able to long-term PM2.5 exposure in China. For example, a study

of county-level mortality burden in 2010 estimated a total burden
of 1.27 million (22). Liu et al. (23) estimated the PM2.5 impact on
mortality defined as the sum of deaths caused by lung cancer,
ischemic heart disease, and stroke from 2004 (0.8 million) to
2012 (1.2 million). Xie et al. (24) reported 1.26 million excess
deaths in 2010 across China, which was 42% higher than their
PM2.5-associated mortality burden estimation in 2000. Although
similar spatial distributions were observed between our estima-
tion and previous researches (22, 24), our annual mortality
burdens are higher than the aforementioned studies. The dis-
crepancy may partly be explained by our exposure estimates.
Most previous studies adopted satellite-based PM2.5 estimates at
0.1-degree resolution without accounting for the AOD missing-
ness or an elaborate gap-filing approach (4, 25). Our study in-
dicates that the biases in mortality burden estimation need to be
corrected in most regions of China with gap-filled PM2.5 esti-
mates (SI Appendix, Fig. S6), and substantial underestimation of
premature deaths in Xinjiang province and overestimation in
central and eastern China may be introduced if biased PM2.5
exposure was adopted. In addition, previous studies have esti-
mated the mortality burden based on the integrated exposure–
response functions (IERs), which simulated the health impacts
of PM2.5 using estimated hazard effects of household air pollu-
tion, active and second-hand smoking, assuming equal toxicity
without considering compositional difference (3, 26). By in-
cluding more causes of death and additional cohort studies,
Burnett et al. (27) reported a 120% larger mortality burden using
the Global Exposure Mortality Model (GEMM) than the IER-
based estimates. Our estimated annual mortality burden based
on a Chinese cohort study and the GEMM was also higher than
those predicted by the IERs (3, 22, 23). Our results are overall
20% lower than direct GEMM estimates (SI Appendix, Fig. S7),
suggesting that uncertainties may still exist when applying global
models directly in China.
In the current analysis, provincial adult disease burdens of

long-term PM2.5 exposure in China were also estimated. In a
country with about 1.4 billion people and a vast territory, air
pollution levels, population density, age structure, and economic
development in China vary substantially in space and time.
Greater resources need to be devoted to the provinces with se-
vere air pollution to meet WHO guidelines (28), compared with
the relatively clean regions. Therefore, a comprehensive analysis
of provincial mortality burden would support targeted planning
for air quality improvement and health promotion. Despite
continuous population growth, adult mortality burden caused by
PM2.5 exposure increased by 29% from 2000 to 2013, then
gradually decreased to the level of 2000 until 2016 (Fig. 4B),
demonstrating the effectiveness of aggressive emission control
measures taken by the Chinese government. A similar finding
was reported by Huang et al. (29), where a yearly reduction in
mortality burden in 74 major Chinese cities was observed from
2013 to 2017.

Strengths. Taking advantage of satellite-retrieved AOD at 1-km
resolution and spatiotemporally resolved environmental and
geographical data from multiple sources, we generated a 17-y
time series of high-quality PM2.5 estimates. Unlike many previ-
ous studies (4, 11), gap-filling techniques were used to minimize
the bias in monthly PM2.5 estimates caused by the nonrandom
missingness in AOD. Combining two machine-learning algo-
rithms helped improve prediction accuracy and stability. This
study characterizes the long-term trend of PM2.5-associated
mortality burden in China with high-resolution, full-coverage,
and unbiased PM2.5 exposure estimates, as well as an
exposure–response relationship derived from a nationally rep-
resentative Chinese cohort study supplemented by the GEMM.

Liang et al. PNAS | October 13, 2020 | vol. 117 | no. 41 | 25605
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Limitations.While our method demonstrated significant strengths
in estimating long-term PM2.5 exposure in China, several limi-
tations remain. First, despite our effort to use all available ob-
servations to validate model predictions, historical PM2.5 trends
cannot be assessed equally well in every region of China. Second,
although our machine-learning models performed well overall,
their performance varied regionally. A slightly lower accuracy
was noted in northwestern China, which could result from both
sparse ground monitors and challenging conditions for AOD
retrieval. Third, although the concentration–response (C–R)
relationship between PM2.5 and mortality in our study was
adopted from a Chinese cohort study, the section of this curve at
PM2.5 levels below 31.2 μg/m3 [minimum PM2.5 concentrations in
Yang et al. (30)] was modeled using the GEMM approach, which
mainly involves studies from developed countries. Given differ-
ent PM2.5 composition, population susceptibility among coun-
tries, and modeling methodology, this integrated C–R
relationship may still differ from the true causal effect in China
at low exposure levels. Additional investigations in relatively
clean regions of China are still needed. Finally, limited by the
availability of detailed annual population and mortality rate
data, the PM2.5 mortality burden at a finer scale cannot be es-
timated every year. However, the spatial patterns of our
provincial-level estimates are consistent with county-level esti-
mates in 2000 and 2010 when detailed population and mortality
rate data are available (SI Appendix, Fig. S4). Nonetheless, more
research on the spatiotemporal distribution of mortality burden
at finer scales is still needed, especially in the western regions
of China.

Perspectives for Future Applications. Using spatiotemporal expo-
sure estimates from this analysis, additional epidemiological
studies focusing on the chronic health effects of PM2.5 exposure
among the Chinese population can be conducted in the future.
Consequently, the health burden of other diseases attributable to
PM2.5 exposure in China could be generated. Furthermore, this
massive outdoor PM2.5 database may be applied in combination
with indoor source information to better characterize the ad-
verse effect of personal air pollution exposure.

Conclusion.We reported a high-performance modeling technique
to estimate reliable PM2.5 concentrations at 1-km resolution.
These long-term PM2.5 estimates will greatly enhance environ-
mental epidemiological studies relating to air pollution exposure
in China. Comprehensive assessments of the health effects at-
tributable to air pollution in highly polluted regions such as
China are urgently needed to illustrate the full shape of the
global exposure–response relationship.

Materials and Methods
Study Setting. Our study domain includes Chinese mainland, Hong Kong,
Macao, and Taiwan (Fig. 1). In this study, provinces refer to all provinces,
municipalities, autonomous regions, and special administrative regions of
China. A 1 × 1-km2 grid was designed to cover the entire study domain plus a
100-km buffer zone for data collection and spatial alignment. A total of
9,507,413 grid cells were within the border of China. Monthly mean PM2.5

concentrations from 2000 to 2016 in each grid cell were estimated, and the
corresponding annual mortality burden in each province was calculated.

Ground PM2.5 Measurements. Daily mean PM2.5 concentrations from 1,530
ground monitors during 2013 and 2016 were collected from the CNEMC
(http://www.cnemc.cn), Hong Kong Environmental Protection Department
(https://www.epd.gov.hk/epd/english/top.html), and Taiwan Environmental
Protection Agency (http://taqm.epa.gov.tw) (Fig. 1). Daily PM2.5 concentra-
tions from each monitor with no less than 15 d in any given month were ag-
gregated to the monthly mean. These data were used for model training and
CV. The validation of historical PM2.5 predictions from 2000 to 2012 used avail-
able PM2.5 measurements from Hong Kong, Taiwan, the US Embassy and Con-
sulates in Beijing, Shanghai, and Guangzhou (https://china.usembassy-china.org.
cn), as well as experimental campaigns operated by Tsinghua University (31).

Locations of these PM2.5 monitors from 2000 to 2012 are shown in Fig. 1, and
detailed information about them is presented in SI Appendix, Table S1. Each
monitor was matched to the grid cell where it is located. Monthly mean PM2.5

concentrations were calculated using all daily measurements in the same
grid cell.

AODData.MAIACAOD at 1-km spatial resolutionwas produced by theMAIAC
team at the National Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (32). Derived using MODIS observations, MAIAC AOD has
higher spatial coverage and better accuracy than the standard MODIS AOD
products (33). AERONET AOD measurements (Version 3) at 440 and 675 nm
in China were extracted and interpolated to 550 nm using the Angstrom
exponent to evaluate the accuracy of MAIAC AOD. MAIAC AOD was highly
correlated with AERONET observations with correlation coefficients over
0.92 (34). MAIAC AOD data from the Terra satellite (overpass at 10:30 AM
local time) were available since the 56th day of the year 2000, and from the
Aqua satellite (overpass at 1:30 PM local time) since the 185th day of 2002.
We extracted all AOD values at 550 nm from their available dates until the
end of 2016.

Meteorological Data. Meteorological variables at 12.5-km spatial resolution
were extracted from the European Center for Medium-Range Weather
Forecast (ECMWF) Reanalysis Interim (ERA-Interim) (35). An inverse distance
weighting (IDW) approach was used to interpolate all meteorological vari-
ables to 1-km grid cells. Data during the overpass times of Terra and Aqua
satellites in each day were then averaged and used for filling daily AOD
gaps. Monthly data with all daily hours included were used for PM2.5 esti-
mation. To investigate the impact of different interpolation approaches on
the ECMWF data, we performed a 10-fold CV for IDW and Ordinary Kriging
results at the monthly level separately, and compared interpolated tem-
perature and relative humidity at 1-km resolution with observations from
over 3,600 weather stations in China between 2000 and 2016. Satisfactory
and highly comparable model performances were shown for both ap-
proaches with CV R2 values of 0.96 and 0.75 at the monthly level for tem-
perature and relative humidity, respectively (SI Appendix, Fig. S8).

Cloud Fraction. Collection 6 level 2 MODIS daytime Cloud fraction was
obtained from NASA (https://ladsweb.modaps.eosdis.nasa.gov/). We resam-
pled the daily data of Aqua and Terra cloud fraction at 5-km resolution to
the 1-km grid cells by a nearest-neighbor approach, separately, and then the
values in each grid cell were averaged and used as a predictor to fill
missing AOD.

Reanalysis AOD and PM2.5 Data. Daily AOD and monthly PM2.5 components
simulations at 0.5° × 0.625° (latitude × longitude) resolution were extracted
from the modern-era retrospective analysis for research and applications
(MERRA, Version 2) (36). Major PM2.5 components, including organic carbon,
black carbon, sulfate, dust, and sea salt, were assigned weights of 2.100,
1.375, 1.000, 1.000, and 1.000, respectively, then summed to estimate PM2.5

mass concentration. Details on the weighting method of these four com-
ponents can be found elsewhere (5).

Emissions Inventory of PM2.5. Monthly inventories of total emissions of PM2.5

at 0.1-degree resolution from 2000 to 2014 were obtained from Peking
University (37) and matched to the 1-km grid cells by a nearest-neighbor
approach to maintain a consistent spatial resolution with MAIAC AOD. Since
inventories were unavailable after 2014, data on the corresponding months
in 2014 were used in 2015 and 2016.

Other Variables for PM2.5 Estimation. Normalized difference vegetation index
(NDVI) data at 500-m resolution (16-d interval) were extracted from the
Global MODIS vegetation indices (VI) level-3 product. The beginning dates of
Terra and Aqua AOD for each year were staggered with an 8-d difference.
By combining Terra and Aqua NDVI, 8-d composite NDVI was calculated (6)
and then averaged to the monthly level. Road network, including highways
and city expressways in 2002, 2006, 2010, 2014, and land use information (at
1-km resolution every 5 y, starting in 2000) were obtained from the Institute
of Geographic Sciences and Natural Resources Research of the Chinese
Academy of Sciences. Highway length and major types of land surfaces in
each grid cell were calculated. Elevation at 30-m resolution was extracted
from the Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) Global Digital Elevation Model, Version 2 (GDEM V2) (https://
asterweb.jpl.nasa.gov/gdem.asp). Population density at 1-km resolution in
2010 was downloaded from LandScan website.
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AOD Gap-Filling Techniques. A two-step approach was used to fill AOD
missingness and produce an AOD field with complete coverage in space and
time. In the first step, we performed a daily simple linear regression to im-
pute the missing values for Aqua or Terra AOD (38, 39). Then daily average
of Terra and Aqua AOD in each grid cell was used. In the second step, a
multiple-imputation technique was employed to fill in the remaining miss-
ing AOD values at the daily level. An additive model was adopted with
predictors including MERRA AOD, MODIS cloud fraction, temperature, rel-
ative humidity, boundary layer height, albedo, total column water, and el-
evation. Each missing value was imputed five times, and then averaged to
address the extra variability introduced by traditional imputation models
(38). A bootstrap method was used for repeated sampling in order to vary
the random error (8). The assumption behind our gap-filling approach is that
the AOD field is continuous in space and time, and this spatiotemporal au-
tocorrelation is mediated by various meteorological and land surface con-
ditions represented by the covariates included in the multiple imputation
model. The smooth terms of geographic coordinates of grid cell centroids
were included to address the spatial continuity of gap-filled AOD. Since
previous research suggested that the temporal autocorrelation of fine par-
ticles drops significantly after 3 d (31), we fitted the multiple-imputation
model (Eq. 1) in a 5-d rolling window (i.e., 2 d before and 2 d after the
target date). The model structure is as follows:

AODgt = β1MERRAAODgt + β2CFgt + β3Tempgt + β4RHgt + β5PBLHgt + β6Algt

+ β7TCWgt + β8Elevg + Dt + s(Xg) + s(Yg) + s(X2
g) + s(Y2

g)
+ s(Xg × Yg) + «gt ,

[1]

where AODgt is the combined AOD in grid cell g on DOY t; β1 − β8 are slopes
for the predictors; MERRAAODgt is MERRA simulated AOD in grid cell g on
DOY t; CFgt is the MODIS cloud fraction in grid cell g on DOY t; Tempgt,
RHgt ,   PBLHgt, Algt ,   and  TCWgt are mean temperature, mean relative hu-
midity, boundary layer height, surface albedo, and total column water in
grid cell g on DOY t, respectively; Elevg is the elevation in grid cell g; Dt is the
dummy variable of day across the 5-d period; Xg   and  Yg are the projected
longitude and latitude coordinates of the centroid of grid cell g; and «gt is
the error term in grid cell g on DOY t.

Machine-Learning Algorithms to Estimate PM2.5 Levels. Two machine-learning
algorithms, random forest (RF) and extreme gradient boosting (XGBoost),
were employed to generate monthly mean PM2.5 concentrations between
2000 and 2016. Data from 2013 to 2016 were used for model training. The
final model was constructed with predictors that are correlated with the
distribution of PM2.5 in space and time and collectively ensured best model
CV R2 and RMSE values. Finally, in addition to gap-filled AOD, model pre-
dictors included MERRA PM2.5, temperature, relative humidity, surface
pressure, total precipitation, snowfall, UV B, cloud cover, boundary layer
height, evaporation, albedo, surface net solar radiation, wind speed at 10-m
height, population density, NDVI, highway length, total PM2.5 emission, and
elevation.

Given that the relationship between PM2.5 and AOD varies in space, our RF
and XGBoost models were trained separately in seven subregions, including
the North, Northwest, Northeast, Qinghai-Tibet, Pearl River Delta (PRD),
Yangtze River Delta (YRD), and Southeast (Fig. 1). These subregions were
identified by a K-means clustering algorithm using geographically weighted
regression (5). We took the average of the RF and XGBoost predictions in
each grid cell as the final exposure estimate in order to improve the overall
predictive accuracy (SI Appendix, Table S2). Additionally, we compared these
arithmetic means with weighted averages using a Bayesian model averaging
method (40) on model fitting, model CV, and prediction accuracy. Although
Bayesian model averaging performed better on model fitting (R2 of 0.99 vs.
0.97 at the monthly level), similar or slightly worse performances were ob-
served for model CV and historical prediction compared with the arithmetic
means (SI Appendix, Fig. S9).

Model Validation. Tenfold CV was used to evaluate model performance and
potential overfitting. The dataset with all data records at the monthly level
during 2013–2016 was randomly split into ten subsets. Nine subsets were
used to train a model, which was then employed to predict the withheld
one. This process was repeated 10 times to generate CV PM2.5 concentrations
corresponding to each monthly mean observation used for model training.
Simple linear regression was performed for CV-generated PM2.5 estimates
and observations to evaluate model performance using statistical indicators,

such as R2 and RMSE. Model predictive power during the historical period
was also calculated.

In order to assess the effect of gap-filling approaches on the long-term
PM2.5 estimation, we reran the machine-learning models using AOD data
before filling the missingness, and then monthly mean PM2.5 concentrations
were estimated by adopting the same model structure and factors as the
main estimation, except the AOD type. Here, we removed grid cells with
fewer than 15 d of AOD when calculating monthly mean AOD values.

Estimation of the Mortality Burden of PM2.5 Exposure. Limited by the avail-
ability of spatially resolved population mortality data, the annual burden of
deaths attributable to long-term PM2.5 exposure was calculated at the
provincial level from 2000 to 2016, following methods from the Global
Burden of Disease project (41). Annual age-specific population and all-cause
mortality rates in each province from 2000 to 2016 were collected from the
National Bureau of Statistics of China (http://data.stats.gov.cn/), China Pop-
ulation and Employment Statistics Yearbooks, and Census and Statistics
Department of the Hong Kong and Macao Special Administrative Regions,
and Taiwan province (https://www.censtatd.gov.hk/home/index.jsp, https://
www.dsec.gov.mo/zh-MO/, https://www.stat.gov.tw/). Age-specific mortality
data in 2010 were obtained from demographic census statistics (http://data.
stats.gov.cn/) and those in other years were calculated using the province-
specific proportion of adult deaths (no less than 25 y old) among all ages.

A C–R function between long-term PM2.5 exposure and nonaccidental
mortality for Chinese adults was adopted (30). Involving 116,821 participants
in 15 provinces of China, Yang et al.’s C–R function was fitted across an
exposure range of 31.2 to 97.0 μg/m3. In their study, the effect sizes of the
fitted curve were reported with the lowest exposure level as the reference
(i.e., hazard ratio = 1.00 at PM2.5 concentration = 31.2 μg/m3). However, it
has been previously reported that even exposure to extremely low levels of
PM2.5 may still adversely impact human health (2) and no threshold of PM2.5

exposure has been observed (42). Therefore, we incorporated a function
modeled after the GEMM (27) to account for the health effect of PM2.5

exposure below 31.2 μg/m3. The GEMM was fitted using data from 41 co-
horts, 3 of which are from Chinese mainland, Hong Kong, and Taiwan. From
the GEMM function, the hazard ratio at the reference exposure level
(i.e., 31.2 μg/m3) in Yang et al.’s study was obtained and used as the refer-
ence value to calibrate the relative effect sizes (i.e., hazard ratio) of Yang
et al.’s C–R function above 31.2 μg/m3 in China. Since annual exposure levels
in Fujian, Hainan, Yunnan, and Taiwan (∼8.3% of the total population) can
be lower than the floor level of Yang et al.’s curve, the health effects in
these years/regions were estimated using the GEMM directly. This C–R curve
in China and the GEMM are shown in SI Appendix, Fig. S10.

The absolute number of adult deaths attributable to PM2.5 exposure in
each province was calculated annually using the following equation (Eq. 2).
Province-specific per-capita mortality was presented as the absolute number
of adult deaths divided by adult population size.

Mortalityij = (HR(Cij) − 1)/HR(Cij) × Popij × Iij , [2]

where Mortalityij is the estimated premature deaths in province i at year j;
HR(Cij) is the estimated hazard ratio in province i at year j; Popij is the total
adult population in province i at year j; and Iij is the baseline mortality rate
of adults in province i at year j.

To estimate the 95%CI of the national mortality burden each year, the HRs
of the 34 provinces (assuming independent normal distributions) were ran-
domly and simultaneously sampled 10,000 times. The estimated provincial
premature deaths in each iteration were summed to represent the annual
total mortality burden associated with long-term PM2.5 exposure in China
(43). Finally, the 95% CIs of the national burdens were estimated as range
between the 2.5th and 97.5th percentile of the 10,000 national estimates. In
order to subtract the amount of premature death attributable to population
growth, annual mortality burden among adults in each province was
recalculated using the population in year 2000 as the reference. Taking
advantage of the age-specific population and mortality data from the fifth
and sixth National Census of China (http://data.stats.gov.cn/), county-level
mortality burdens were calculated in 2000 and 2010 to show their spatial
distribution patterns at a finer scale.

Data Availability. Relevant data sources for modeling are provided in the
paper and SI Appendix. Data and codes for the maps of this study are
available from the corresponding authors on reasonable request.
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